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case of <1 for the main-resonance mode, the value of
wq from (54) is ~0.67 times as large as that from (53).
The exact solution? for the infinite-film problem in
circular-cylindrical coordinates for no exchange (D= 0)
is given by (30) with
sin20,=k,%/ (k2 +k.?), (55)
where k. is given by (32) (or the corresponding result for
odd modes) with k; replaced by %,. For pinning at the
edges of the film (o= 0), the values of %, are given by the
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roots of the equation
Jz(k,,?’o) = 0 .

Thus, the values of %, are different for modes having
different values of azimuthal number I. For /=0, this
gives the values k,=0.76m/ry, 1.767/7,, ... listed in
Sec. 5. Considering the other values of / offers an ex-
planation? of the observation of Dillon® that the first,
second, ..., fifth modes in a sample containing a small
imperfection on its edge contained one, two, ..., five
lines, respectively.
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The ferromagnetic-resonance linewidth AH from two-magnon processes in thin films is calculated. The
results are quite different from those in spheroidal samples in general, since both the densities of states and
the scattering Hamiltonians are different. It is shown that it should be possible to choose the radius and
thickness of a ferromagnetic insulator thin film in such a way to make the frequency of the main-resonance
mode lie well below the frequencies of all other magnetic modes. The resulting small AH’s make the films
important for studying ferromagnetic-resonance linewidths and afford a useful low-loss system. For scat-
tering centers (such as pits and scratches on the surface of the sample or etch pits extending through the
sample thickness) which are smaller than the film thickness, the results are similar to those of Sparks,
Loudon, and Kittel (SLK) for a spherical sample. A modification of the SLK result is given which removes
the divergence in AH at parallel resonance and also makes AH go smoothly to zero at perpendicular reson-
ance. For scattering centers which are larger than the film thickness, AH has a rather large maximum at
an angle approximately one-half way between perpendicular and parallel resonance, in contrast to the
small-scattering-center result of a maximum at parallel resonance. In addition to these results for the
main-resonance mode, it is shown that the mode-number-» dependence of the two-magnon linewidths of
exchange modes (having negligible microwave demagnetization energy) varies in a rather complicated
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way from AH~n3 for small # to AH~n? and AH~n for intermediate # to AH~n? for large #.

1. INTRODUCTION

ECENTLY, Mee and co-workers' have succeeded

in growing single-crystal thin films of yttrium iron
garnet (YIG) ranging in thickness from ~0.5 to 40 p.
Since bulk films can be ground to a thickness as small
as 15 p, single-crystal YIG films with any thickness
greater than ~0.5 p are now available. These films
promise to become important ferromagnetic-resonance
systems for the following reasons: It is possible to choose
the thickness S and the radius R of a film in such a way
that there are no magnetic modes degenerate with the
main-resonance mode of the film. The resulting small
linewidths AH should be important for applications re-
quiring low-loss materials, and linewidth mechanisms

* Present address: The RAND Corp., Santa Monica, Calif.,
90406.
17. E. Mee, J. L. Archer, R. H. Meade, and T. N. Hamilton,
Appl. Phys. Letters 10, 289 (1967); J. E. Mee, IEEE Trans.
G-3, 190 (1967).

which were heretofore masked by the large two-magnon
process could be investigated in resonance experiments,
as discussed elsewhere.?

The density of degenerate states can be controlled
experimentally over a vast range from zero to very large
values. It may be possible to study such interesting
effects as mode clamping,® comparison of the relaxation
frequencies of wave packets and standing waves, line-
widths of surface waves on the YIG-substrate interface
and on the YIG-air interface, interaction of magnetic
and acoustic surface waves, effect of the nonzero relaxa-
tion frequencies of the degenerate modes, and com-
parison of golden-rule relaxation frequencies with
normal-mode relaxation frequencies.

The ferromagnetic-resonance linewidth arising from
two-magnon scattering in bulk-type samples (e.g.,
spheroids and thick disks) has been considered by

2 M. Sparks, Phys. Rev. Letters 22, 1310 (1969).
3 M. Sparks, Quart. Appl. Math (to be published).
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several investigators.—¢ We shall show that the two-
magnon linewidth AH in thin films is quite different in
general from that in bulk-type samples. The first reason
for the difference is that the large spacing =/S, where S
is the film thickness, between the modes along the z
axis in % space for thin films makes the density of
degenerate states quite different from that in bulk-type
samples in general. Second, for scattering by an imper-
fection which is large with respect to the film thickness
(a large etch pit, for instance), the scattering Hamil-
tonian is quite different from that in bulk-type samples.
The two most striking differences are the possibility of
obtaining small AH’s in thin films, as discussed above,
and the different angular dependence of AH. (See Figs.
3 and 5 and the related discussion in Sec. 3.) Only the
linewidth of the main-resonance mode is considered in
the body of the paper. The linewidths of the higher-
branch modes are considered briefly in the Appendix.
A summary of the theoretical results is given in Sec. 4.

The calculations in the present paper are based on
scattering from nonmagnetic voids in the film, and the
results are given for the specific case of pits and scratches
on the surface of the film. The general results, such as
those concerning the range k. of the scattering in %
space for imperfections of a given size R, are not
restricted to surface pits and scratches. The modifica-
tions required for scattering from an arbitrary inhomo-
geneous H ; are simple. Since the linewidth of the main-
resonance mode in a metallic film typically is dominated
by eddy-current loss, the present results for the main-
resonance mode are more useful in ferromagnetic
insulators. The results in the Appendix for the higher-
branch exchange modes are valid for insulator and
metallic films.

In Paper 17 of this series, a theory of the frequencies
of the ferromagnetic normal modes in films was de-
veloped, and in Paper III a theory of surface-spin
pinning will be presented. In Paper IV, the effect of an
inhomogeneous internal field and saturation magnetiza-
tion on high-order modes will be considered, and a
surface-imperfection source of the inhomogeneities will
be investigated. In Paper V, experimental results will be
presented and explained in terms of the theories.

2. DISPERSION RELATIONS IN THIN FILMS

In Paper I of this series it was shown that the ordinary
spin-wave frequencies

w wq wq
—_— =H1+Dk2+ —, =27I'Ms sin20k 5
Iv] vl Il

(1a)

4 A. M. Clogston, H. Suhl, L. R. Walker, and P. W. Anderson,
J. Phys. Chem. Solids 1, 129 (1956).

® M. Sparks, R. Loudon, and C. Kittel, Phys. Rev. 122, 791
(1961).

6 P, E. Seiden and M. Sparks, Phys. Rev. 137, A1278 (1965).

7 M. Sparks, preceding paper, Phys. Rev. B 1, 3831 (1970).
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where v is the gyromagnetic ratio, H; is the internal
(demagnetized) field, D is the exchange constant, M,
is the saturation magnetization, and 6, is the angle
between the wave vector k and H; (along the z axis),
can be used for the ferromagnetic-normal-mode fre-
quencies in thin films with finite radius R if the discrete
values of £, ky, and &, are chosen properly. In (1a) the
circular-precession approximation® has been made. For
spin waves at 9.7 GHz in YIG this gives an error
ranging from 0 to 69, depending on the values of Dk?
and sin%;.® At lower frequencies (la) should still be a
good approximation for the small-£ modes of interest
if 2xM, is replaced by [(H;)(H;+4xM,)]"*—H,,
which is the width of the magnon manifold at 2=0.
Of course, the full dispersion relation?

w/|v| =[ (HA4Dr) (H;+Dk+4rM, sin?0;) ]2 (1b)

could be used if better than order-of-magnitude ac-
curacy in the linewidths were required, but the algebra
becomes more involved.

In considering the distribution of modes in k space
we use a square film of dimensions ZXLX.S with zero
boundary conditions at x=24-%L and at y==43L. This
is similar to the familiar approximation of using periodic
boundary conditions on the edges of a square box to
obtain plane waves. The appropriate values of k., %y,
and &, for perpendicular resonance® are’

Ny nyw
kz: ) ku"‘—y nx,ny=1,2,3...
L L
(2)
2kA\Y2 w 2m
kz=<——> =y ey RP=RIRS
S S S

for £;S Z1. These values are intuititively plausible: For
an infinite film %, and %, are continuous and %, has
discrete values (for given values of %, and k,). The
discrete values of %, and %, in (2) for the finite film are
for pinning!® of the microwave magnetization at the
small edges of the film (at x, y==1L), and the discrete
values of k, are those for an infinite film having the
values of %, and &, given in (2).

Combining (1a) and (2) gives

2 U2
for kz=<—kf.5'> —~
w? S
ksS

2 2 %
wd§~|'ylMs(-—) for ko= —;n,=1,2,... (3b)
T S

s

w2 |y | M kS (3a)

8 M. Sparks, Ferromagnetic Relaxation Theory (McGraw-Hill
Book Co., New York, 1964), Sec. 3.3, p. 69.

® Perpendicular (or parallel) resonance indicates that the ap-
plied field H,yp is perpendicular (or parallel) to the plane of the
film.

10 The surface spins are said to be pinned (or unpinned) if the
microwave magnetization m is zero (or the normal derivative of
m is zero) at the surface.
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Fic. 1. Dispersion relations for a thin
film showing the main-branch modes
(open circles) and the higher-branch
modes (solid circles).

[Perpendicular resonance|

main-resonance mode

Ky

for the case of perpendicular resonance with %521,
where Ky is the wave vector in the plane of the film. The
result corresponding to (3a) for an arbitrary value of
the angle 6,, between H; and the normal to the plane of
the film (0,,=0 in perpendicular resonance) is’

wa/ |v| =27M ; sin20,,
+7M k;S(cos?0,,—cos?p sin%6,,), (4)

where ¢ =tan"'(k,/k.).

In bulk-type samples, w typically is considered as a
function of % with sin?0, as a parameter. In thin films
the large spacing /.S of the modes along the z axis in &
space makes it convenient to consider the frequency w
as a function of k, and k,, with k, as a parameter
labeling different dranches. This is illustrated in Fig. 1,
which is a schematic representation of the dispersion
relations (la) for perpendicular resonance. The branch
having the lowest value of &, (open circles in Fig. 1) will
be called the main branch, and those having larger
values of %k, (solid points in Fig. 1) will be called the
higher branches. The main-branch mode having the
smallest value of k; will be called the main-resonance
mode.

The effect of Portis-type pinning!®* on the linewidths
will not be considered in detail. The scattering out of
low-order Portis modes by surface imperfections could

102 A, M. Portis, Appl. Phys. Letters 2, 69 (1963).

be smaller than the corresponding results for sine-wave
modes because the amplitudes of the Portis modes are
smaller near the surfaces of the sample where the
scattering fields are largest. The nonzero slopes’ of the
low-order modes at 2;=0 may reduce the value of AH
by reducing the density of degenerate states.

3. CALCULATION OF TWO-MAGNON LINEWIDTH

We consider the ferromagnetic-resonance linewidth
for two-magnon scattering induced by large scale imper-
fections [say between (100 A)® and 107! times the
sample volume V'] such as pits and scratches on the
sample surface, etch pits, voids, inclusions of materials
of different saturation magnetization, volumes of
different crystallographic orientations, inhomogeneous
strain, inhomogeneous saturation magnetization, etc.
As amodel for the imperfection we consider a small pore
of nonmagnetic material of volume V,&KV introduced
into the sample. The resulting two-magnon linewidth
depends on the size and shape of the pore and on its
position in the sample. Two cases are considered:
scattering by small pits (diameter 2R,&KS) on the
sample surface and scattering by large etch pits (diam-
eter 2R,>>S) which extends across the thickness of the
sample.

Linewidth for small pits (2R ,;&KS). First consider the
scattering out of the main-resonance mode by a small
spherical pore far away from the sample surface. The
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magnetization M can be approximated by
M=ME4+m,

where M, is the (constant) saturation magnetization
and the transverse microwave magnetization m (where
m-2=0) is a function of position r, which can be ap-
proximated by a standing sine wave. The Hamiltonian
for scattering out of the Kittel mode (plane wave with
k=0) into other plane-wave modes k is®8:1!

5e=Y F (b, by+b:15,)
k

where

Fi2=(5.6/16)(4nyM :)*(V ,/V)24:C Q)

with the angle factor!* 4 and cutoff factor Cy, defined as

Ar=[(3 cos?0,—1)24+1.6]/5.6,
Cr=[371(kR,)/kR, .

The 5 and b are creation and annihilation operators, »
denotes the main-resonance mode (Kittel mode for
plane waves) and ji(x)= (sinx—x cosx)/«% For small
pits, the microwave magnetization of the main-reso-
nance mode in the finite films is constant in the vicinity
of a pit, and the analysis leading to (5) is unchanged for
standing waves apart from numerical factors arising
from the integral in 3C=—3 fdrh-m. Replacing the
plane-wave factor exp(tk-r) in Eq. (3.69) of Ref. 8
by the normalized standing-wave factor (V2 cosk.x)
(V2 cosk,y) gives

(6)

2|y [AM N\
mt= mﬁ—in@=(———;f——) >~ 2 coskyx coskyy by. (7)
k

The plane-wave value of Fx? in (5) must be multiplied
by (2v2/7)® [where (1/7) /o™ dxV2 cosx=2V2/7] to
account for the average over the standing waves along
the « and y axis of modes k and 7.

Just as in the Sparks-London-Kittel calculation,’ we
must take into account the fact that there are hemi-
spherical pits on the surface of the sample rather than
spherical pits in an infinite volume. It is plausible that
the scattering Hamiltonian should be reduced by a
factor of % to account for the reduction in the effective
magnetic moment of the scatterer and a factor of % to
account for integrating over a semi-infinite half-space
rather than over an infinite volume. Thus F;? in (5)
must be multiplied by (2v2/7)8(3)4=(2/x)8.

The Born-approximation result for the linewidth for
scattering from a single spherical pit in the center of a
large sample is

2
2 |Fil?

ly| & tlylam
3vAH))?

b
(wr—wi)*+GvAH)?
1t M. Sparks, Ref. 8. See Eq. (5.3) and p. 86.

AH e pit=
®)
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where & |y|AH, is the relaxation frequency (assumed to
be independent of k for simplicity) of the modes coupled
to the relaxing mode 7, w, is the frequency of mode 7,
and wy are the frequencies of the coupled modes k.

In the line-shape factor G, we have not taken the
usual é-function limit

o GlvIAH:)
limit
HylAHE>0 (4 — )2+ (3yAH)?

=rd(w,—wr), (9)

since off-resonance scattering will be considered. Multi-
plying AHne pit in (8) by the factor (2/7)8 from above
and by the number of surface pits 2mR?/(2R,)? (assum-
ing square-lattice packing and independent scattering
by the individual pits) and using (5) gives

AIfsml pits =lek ) 2k =Z AkaGlc 5
k

(10)

1= ——

5;)6(2)7 (4mM.)* (2R,)*

+)  AH. (2R)S*

m

where Ax, Ci, and Gi are defined in (6) and (8). A
convenient form of H; is

" (41rM,>2< 0.2 )( 2R, >4<20 mﬂ>2<1p>2
\17s0/ \am/No.2ss/ \ 2R / \s

X6.1mOe (11)

where 20 mil=5X 10%u.

Evaluation of 2y, for small pits. The scattering Hamil-
tonian for small pits couples the main-resonance mode
strongly to both the higher-branch and main-branch
modes, as seen in (5). Because of this and the fact that
the sum over k in (8) contains many large terms from
many different branches (except at perpendicular
resonance in very thin films—which is discussed sepa-
rately in the following subsection), the §-function ap-
proximation (9) can be used for the line-shape factor G
in (8) and (10). Also, the dispersion relation (1a) can be
used with sin?; considered as a continuous parameter
for this case. That is, the dispersion relation for the
coupled modes k is essentially the same as for ordinary
magons.

Approximating the sum in (10) by an integral, making
the é-function approximation (9), and using

8wk —wy) = ————[8(u—ur)+6(utur)], (12)
47r|'ylquk
where #= cosf; and
H;+Dk*4-27M s— (w,, A
e . (w/lﬂ)z——k?%—uoz, (13)
2w M, 2w

ul=up?| 1m0, A=D/M,
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F16. 2. Usual magnon dispersion relation, shown to illustrate
the meaning of uo, %s, ka?, ke, Rmax +%, and kmux® In this figure,
k& <kmax +*; thus ks=£k.. The dots are discussed in the Appendix.

gives
3|y |AHGm)w

Crdy
Z=—— dk k2
w  Adr|y| M, 0 U,

X/ du 6(u—uy). (14)

The value of the # integral is 1 for 0<#,<1 and 0
otherwise. For H;<w,/|v|<H,+2xM,, ur<l gives
k<PEmax », Where

)

is the maximum value of & for modes degenerate with
the main-resonance mode 7. (See Fig. 2.) Thus, the
upper limit of « in the % integral in (14) is replaced by
kmax~ The function Cr=[371(kR,)/kR,]* can be ap-
proximated by the unit-step function

Cv=20(k.—Fk), k2(9/20%)3r/R,. (15)

The cutoff value of k.=(9/27)3(x/R,) was chosen

to make
ke * 3
/ dk k2=/ dk R*Cr=——;
0 0 2R}

with these two results, (14) gives

V AH}C szlc
Zk = dk ) (16)
4 4w LA/ 2m)k>+ue? ]2
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where & is k; Or kmax r, Whichever is smaller. Since A
is not a strong function of £ and k2? weights the large
values of k, Ay can be evaluated at 2=k, and taken
outside the integral. Evaluating the integral in (16) and
using (10) then gives

5.60/(2m) /2\7  (Bu.r—1)41.6 (2R,)*
LSV

288 \r 5.6 Sv/A
kot (ka2 ka2
W], (17

d

Xl:ks(ksz+kd2)1/2'—kd2 In

where
ka?=2ru*/A=kmnax®—
max~ (27"]‘[.‘?/1))1/2

2
maxr y

(2m/A)*2,

and #s=uy| =z, (See Fig. 2.)

Several limiting cases of (17) are of interest. If the
scattering centers are not too small (i.e., if £:<Zkmax),
then ky=/k,<fmax - is satisfied everywhere in the mani-
fold except very near the bottom. The bracket factor
in (17) has the limiting values of 2k2/3kq for ks2>>k 2
and k.2 for k2<<k2 and (17) reduces to

5.6/2\8  (3u—1)+1.6 2R,
AI:Z'sml pits — ?(‘) 4‘7|'Ma B

i 56%0 S
<47rMs <2R,, )(m
B 1750) 0.254 S>
(Bu2—1)2+1.6
BX27.2 Oe,
5.6140

where
for ka2>>k?
» (18a)

2w
ka= (—) uo=4.41X 108,
A

fmax=Q2m/A)V2 ) kmax »=[2w/A) (1 —u?) ]2,
ks=lesser of (k¢,kmaxr),

for this case of k<Kkmax. The top value of B=1 is
valid everywhere in the manifold except near the top
or bottom, and the bottom value of B is valid near the
top of the manifold. Near the bottom of the manifold,
the inequality k. <kmax r is not satisfied since Zmax » — 0
at the bottom. This makes H~F.x . near the bottom
of the manifold, as will be shown in (18b).
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For kcKkmax and k2>k 2 the present result (18a)
with B=1 reduces to that of Sparks, Loudon, and
Kittel® with the Seiden and Sparks angle factor® in-
cluded and the appropriate change for the number of
surface pits on a thin film rather than a spherical sample.
The present result (18a) is not limited to the case of
relatively large scattering centers (R,S1u in parallel
resonance, and even larger in perpendicular resonance),
as were the results of Sparks, Loudon, and Kittel.

Note that AH in (18a) remains finite at #o=0 (parallel
resonance in an infinite film) because %, in B cancels
1/u01n the coefficient of B in (18a). Thus, the new result
(18a) removes the troublesome divergence in parallel
resonance without having to invoke arguments about
the finite size of AH}.5

The result (16) is valid for w, above the top of the
manifold, i.e., for w,>|v| (H:+2wM,), in which case
kq? is negative, if the lower limit of zero in the integral is
replaced by |ka|. For |kq| >k, the value of the integral
is to be taken as zero. For the present case of fairly
large scatters, i.e., k2<KkmaxZ, the value of k4| is equal
to k. for w, slightly above the top of the manifold,
causing AH to drop to zero fairly sharply at the top of
the manifold.

The value of AHgmi pits from (18a) is sketched as a
function of the angle 6,, between H; and the film normal
in Fig. 3. The functional form of the angle factor
[(3u,2—1)241.6 ]/uo in (18a) is somewhat arbitrary.5-
and the value of AH at the minimum in Fig. 3 is rather
sensitive to this factor, but the general features of the
figure are otherwise relatively insensitive to the details
of the model.

Next consider the limiting case of very small scatter-
ing centers, i.e., k> kmax r, for which the relaxing mode
scatters into all degenerate modes. In this case ks=kmax
and k2 4-ka?=kmax®= 2w /A in the bracket factor in (17).
Expanding the bracket factor gives kmax ~(A/27)"2 for
Dkrox 2<<27M ; (i.e., near the bottom of the manifold)
and Emax »(27/A)2 for |ke?|<<kma? (i.e., near the top
of the manifold, either above or below), and (17)
reduces to

5.6 /2\7
AH‘vy sml pits = ”‘"(“) 4:1I'Ma
28

8\
Bus—1)241.6 (2R,)*
X B., (18b)
5.6 S
where
Bs =kmax r3 ) for kaax r2<<21l'M3
=Q21/ANkwmaxr, for |k2|<Khmax

for this ‘“equal-scattering” case of k;>kmax ». The top
value of B, is valid near the bottom of the manifold
and the bottom value is valid near the top of the
manifold. The value of %ma.x - increases as w, increases,
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Fi6. 3. Angular dependence of the two-magnon AH for scatter-
ing centers smaller than the film thickness. The results are the
same as those for bulk-type samples except for the different
number of scattering centers on the surfaces of the samples. The
previous results of Sparks, Loudon, and Kittel are shown as a
dashed curve.

and Emax »<k. is no longer satisfied for sufficiently large
values of w,. At this point AH drops below the value
given in (18b).

The linewidth in (18a) goes smoothly to zero at the
bottom of the manifold (#y— 1). Thus AH will be
small in thin films in perpendicular resonance since #o
is small. For example, for 2R,=0.25 u, S=1y, and the
main-resonance mode 6 Oe above the bottom of the
spin-wave manifold in YIG, (18a) gives AH=1.5 Oe,
which is to be compared with AH=85 Oe for the
corresponding conditions (8H=6 Oe) in parallel reso-
nance. The results (18a) should be valid for parallel
resonance in general and for values of 6, not too near
zero (so that there are many higher branches with
w<w,). We shall now show that in very thin films in
perpendicular resonance AH will be even smaller than
the value given by (18a).

AH, in very thin films. By a very thin film we mean
that the modes in the first higher branch in perpen-
dicular resonance have higher frequencies than that of
the main-resonance mode. In this case there are no
modes degenerate with the main-resonance mode. If the
aspect ratio 2R/S is sufficiently small, the other modes
of the main branch are resolved from the main-reso-
nance mode, and scattering into all modes is small.

We now estimate the value of AH from off-resonance
scattering of the main-resonance mode into the higher
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Fi1c. 4. Geometry of the model of an imperfection used in calculating the linewidth for scattering by large imperfections.

branches. Note that the §-function approximation (9)
gives AH =0 since there are no degenerate modes. From
(10) with (w,—wr)®>(EvAH)? we find

L? T
Zp=—(3vAHK)*— 2
‘ll'2 2 k2

dks ky———, (19)
0 w,—wi)?

where the sum over %, and k, has been replaced by the
integral over k;. From (3) we find

wp—wp= |y |0Hn,+2/7) |y | Mo(ksS/n.)?,

where the spacing 86H,, between the main-resonance
mode and the k;=0 limit of the exchange mode with
k.=mn,/S is

0H , ~2D(mn./S)?.

Using these results and evaluating the integral in (19)
gives

~

P

1 (AH)? (2R)?
% 32 4eM, D

(20)

Since the summand is independent of k., the value of
the sum is the summand times the number of terms
in the sum. The number of modes with k.<k. is
(97/2)13(2/7)(S/2R ), which gives

1( 9 )1/3 (AH.)? (2R)2S
16\222/  4xM, D(2R,)

(AHk)2< 1750 ><4.5>< 109 Oe cm2>
"\ o0.2/ \4nur, D

aow) GG, s @

From (21) and (10)
AH W fATM N\ [ 2R, \?
=53 i fozs,)
0.2 /\ 1750 /\0.254

4.5X107° Oe cm?\ /1u
X<————)<—) X15.4mOe. (22)
D S

2k

This value of ~15 mQOe is much smaller than the

corresponding value of 1.5 Oe obtained formally from
(18a). It is easy to show that the contribution to AH
from scattering by pits with 2R,>>S in very thin films
in perpendicular resonance is also very small.

Linewidth for large pits (2R,3.S). We first find the
Hamiltonian for scattering out of the main-resonance
mode into modes with k2,=0 and k;= (k.2+k,2) Zn/R,
(so that the magnetization of both modes is essentially
constant over the pit). Consider the scattering by a pit
which extends across the thickness of the film, such as
a pit etched all the way through the film to the sub-
strate. As a model we consider a square void of sides
L, (and thickness S). The difference between this
square void and observed etch pits, which are typically
nearly circular, should not be important in an order-of-
magnitude calculation.

The scattering Hamiltonian is

1
H=— - /dr hd-m.
2

Expanding m and the demagnetization field hg in the
normal modes of the film gives products of creation and
annihilation operators of the relaxing mode » and the
remaining modes k. It is easy to show that!?:13

/drh,-mk=/dr hy-m,,

where m; (or m,) is the magnetization of mode k (or
mode 7) and hy, (or h,) is the demagnetization field from
m;, (or m,). Thus the term in (23) which couples k to »
can be written as

(23)

3@=—/dr h,-my, (24)

and we must calculate only h,, and not h;. The solution
to the usual equations

V-b,=V:(h,+4rm,)=0, VXh,=0

12 C. Warren Haas and Herbert B. Callen, in Magnetism,
edited by G. T. Rado and H. Suhl (Academic, New York, 1963),
Vol. 1.

18 Jay P. Sage, Phys. Rev. 185, 859 (1969).
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is well known:

h=Vy, V@)= / )

|t/ —r|

where the integral extends over all of space.

First consider the contribution %, to the component
h of h, (see Fig. 4) from the § function in V-m, at X=0
(ie., at x=-+%L,), where X is shown in Fig. 4.
From (25),

V' -m,(r')
hy=— | dt'X—- ——
(X24-5'24-y/2)312

Since m, is constant in the region near the pit, (26) gives
se 4 3L,
hy=—2m, X / ds’
_s/2 X2+Z’2 [XZ_*_(%L )2__|_z/2:|1/2

With $L,>3>3S, 2’2 can be neglected in the square root,
giving

(26)

2mpeLp S
=— — tan—1— 27
De+GL)Te 2
We can approximate (27) by
= —2wm,y, for 0=x=<1S
S
= —2m,—, for $3S=X=<iL,
X
L,S
%’—mm—;—, for $L,=X. (28)
X

The contribution /_ from the surface at x=—1L, is
obtained from (28) by multiplying by —1 and replacing
X by X+L,. It is easy to show that %_ is negligible for
X Z%Ly. Thus ho=h,+h_ can be approximated by

he=—2mm,,, for 0=X=1S

S

= —2m,—, for $3SSX=Z1L,. (29)
X

From (29) and (24) it is not difficult to show that the
contribution JC< to 3C from the region p= (x2y2)1/2
< 3L, is approximately

2 L,
JC<%21rmr(p)mk(p)S2Lp<l+ - 1n——> s (30)
x 2§

where m,(p) and my(p) are the values of m,, and m;, at
the pit.

We estimate the contribution 3Cs to 3C from the
region p>3%L, by using a circular pit of radius R,. It is
easy to show that for >R,

ha=m,(p)(V /p*)(1—3 cos?¢ps),
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where ¢,=tan~!(y/x). Thus

_:m,(p)mx(p)S/ quz/ dp p—(3 cos’p,—1)

=mm.(p)mi(p)S*R,*.  (31)

Adding (30) and (31) and setting L,2=7R,? gives

3 =273"m,(p)mi(p)S?R
T 2 »
(1+\L+_1n( VmR ) (32)
2 45

The x components m.(p) and my(p) are equal to
m.(p) =5[mF(p)+m(p)] and the corresponding ex-
pression with » replaced by k, where m*=m,+im,.

The coupling (from mode 7 with %2,=0 into mode k
with k.=0) is reduced when k,<Zw/R, and k,Zr/R,
since the positive and negative surface poles for A\ZR,,
malke the demagnetization field small. Thus, we multiply
3¢ in (32) by the product 6(x/R,—k,)0(x/R,—k,) of
unit-step functions. This cutoff factor is analogous to
Cx=20(k.—k) in (15) and (6).

Using these three results and the fact that m.(p)
~V2 cos(mx/L)V2 cos(my/L)=2 at x=y=0 and intro-
ducing a factor of (2v2/7)? in 3¢ for the average of
|mi(p)| over k, and &, gives

5e=3" hFu(b,tbitbithy),
k

where
2\ T 2 (m
(sz,ky,o)2=2(—> <1+§/;+_ n( \ZS) )
(2R,)%S (mi(p)\*
M) . (33
X 4wy M,) (2R)" <mr(0)> (33)

Here m,(0) is the maximum value of m.(r) (at r=0).

For the case of L,=.S, replacing the integral over
y" and 2’ in (26) by 27 f°dp p and repeating the analysis
above gives

3e=2m.(p)mi(p)S?. (34)

For a sample containing N, pits, we assume inde-
pendent scattering by the individual pits. In general,
both R, and m.(p) are different for the different pits,
and the value of AH for one pit is simply summed over
all pits. For simplicity, we assume pits of equal radii
R,, and write the sum over m.(p) as M,Npis, Where 17,
is the average of m,(p) over all pits. Then, from (8)
and (33) we obtain

AH=H12k, 2= Z

kz,ky<w/Rp

G, (3%5)
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oy

(2Rp)252< My \ 2
Afpits
(2R)* m,(O))

3 (41rM R 2( 0.2
B 1750) AHk>
><{ 14+3v/7+(2/7) In[(2/7)R,/4S]}*
6.2937

<G 6 G Ce)

1\7pits
X< >X43.5 mOe, (36)
1

(where 20 mil=5X10? ) for scattering out of the main
resonance mode into modes with k,=0 by N pits with
2R, >S. The corresponding result for 2R,=(2/+/x)S
is obtained directly from (34). Replacing the bracket by
1 and (2R,)? by (4/7)S? in (36) gives

7 <41rMs>2<0.2 (S 3<20mil>4
"\ 1750 AH;) 1;;) 2R
mr 2 Arpits
x( )( >><8.81m0e (37)
m.(0) 1

for 2R,=(2/+/7)S.

For scattering of the main-resonance mode into modes
with %k,>0, F;? is much smaller than the value given in
(33). For modes with #,=2, 4, 6, ..., which are odd in
z, F12=0 because %, is odd in z. For scattering into
modes with #,=3, 5, 7, ..., we write the demagnetiza-
tion field of the pit as h=hy+48h, where h, is inde-
pendent of z. From Eq. (26) with 3’ replaced by 5’ —3,
it is easy to calculate the value of %, for several values
of z and X in the neighborhood of pit. [For example,
for Xx=3S, h.~2a(2wm,), where a=0.499, 0.458, and
0.352 for =0, 1S, and %5, respectively. ] In this way, it
is easy to show that

h:=2(0.499-0.352)2wm, cos(xz/S), for 0<X<1S

~0,

for 35<x

is a fair approximation to /%, With this value of %,

=~ — /drhxm
82 Tz (n.—mz

=2(27m,)0.147L 1S / dz cos—mg cos
—8/2 S S

SPARKS 1

Evaluating the integral and using L,=7'/2R,, gives, for
n,=3,5,7, ...,

|3¢| =4(0.147)7' 2m, (p)mu(p) R pS? —) (38)

No\Wz—

Comparing (38) and (32) shows that (Fy,,x,,0)? in (33)
should be reduced by the factor

(4/7%)(0.147)2 1
{(14+3v/7+(2/m) I[(2/m)R,/AST) 2 0.2(n,—2)*

which is equal to 6.54X 1075 for 2R =50 u, 2R= 20 mil,
and S=1 u. Thus, the scattering of the main-resonance
mode into exchange branches by large pits (2R,3.S) is
much weaker than the scattering into other magneto-
static modes.

Evaluation of Zy, for large pits (2R, 3.S). The scattering
of the main-resonance mode into modes on the higher
branches gives values of AH which are very small,
typically of the order of a few mOe or less, because the
factor in (39) is small. Furthermore, there are no
degenerate modes for small.§ in | resonance. For very
large pits the range in k,—k, space of the coupling is
so short that the main-resonance mode is not coupled
to the higher branches in parallel resonance. That is,
there are no modes on these branches which satisfy
ks<w/R,and k,<m/R,. Thus, we calculate the scatter-
ing into the modes of the main branch only.

The linewidth AH as a function of the angle 6.
between H; and the normal to the plane of the film
(6,=0 in perpendicular resonance) can be obtained by
evaluating the sum in Z; in (35). From (4), the value of
Wi —Wey 1S

wp—w,=2m|v| M, sin20,,—w,+7|v| M kS
X (c0s%0,,—cos’p sin?f,,) .

(39)

(40)

We use the §-function limit (9) for Gi. From the well-
known result

8(x—x0)
w |df/ds|a
where the x¢’s are the zeros of f, it follows that

8(p—o)

2|singo cosgo|

5(f(x))=

6(cos?p—E?) = (41)

where cos’po=ZF2 With singe= (1—E?)'2, cospo=EFE,
8(ax)=|a|~18(x), and wy—wr—w, given by (40), we find
d(wr—w,) =[27|v| M Sk; sin20,,E(1—E?)1/2 ]!
Xd(p—¢o), (42)
where
E=[cot20,,— (2 cot?0,—1)x/V2k;L 2.  (43)

We have used (4) with cos2p=1 (since kp,=Fk,=7/L)
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for w,. Approximating the sums over k, and %, in (35)
by an integral over k; and approximating 6(w/R,—k.)
XO0(r/Ry—Fky) by 6(r/R,—Fk;) and using (42) gives
(with L2=7R?)

%/ Rp

db————. (44)
E(1—E2)2

1 AH, (2R)? 1
C 44rM, S

sin26,,

The integral extends only over real values of the inte-
grand since

1
/ dpd(cos’p—E?) =0
0

for E(1—E?)'/? complex.

The integral in (44) can be evaluated exactly, but the
result is too complicated to interpret easily. We there-
fore consider the values of the integral at several key
values of 0, from which the general form of AH as a
function of 6, is obtained.

For 0,,=m/2 (parallel resonance), cot?6,,=0 and (43)
gives E=(w/V2k;L)*2. The factor (1—E?*)2 in (44)
should be replaced by 1 because the contribution to the
integral from the region of ks near kp=w/V2ZL [where
(1—E?*)'2is large]is greatly overestimated by replacing
the sum by an integral. That is, for the very small values
of k;=2k;, there are only a few widely spaced points in
k space, and the sum should not be replaced by an
integral. Thus, with Jf'dksk2=%(r/R,)3?, (44) gives

(2R)5/2

So= amyioy GO 45
" ( it SR @
With (35) this gives
4 2 R,
AH||—-1(27I')1/4< ) 41rM3<1+2\/7r+—1n( \/41.;) >

(m,,)ms( m

- 2N pitsy
(ZR) 3/2 > (46)

mr(o)
which can be written as

o= (20 e /A
""\1750/ 6.2037

QRAV2/ S\ /20 mil\¥/2/ 1, \?
X(E) (ﬂ)( 2R ) (mr(0)>
X NyitsX3.3 Oe.
»=(2/+/7)S is

AxM o\ £ S\¥2/20 mil\*/2/ 17, \?2
=705 Ge) Go)
1750 /\1p 2R m,(0)

pritaXO.zs Oe.

(47)
From (37), the value of AH,, for 2R

(48)
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For 2 cot?0,—1=0, i.e., 0,=254.7°, (43) gives E=+/3%.
With f'dk,[EA/(1—E?)T1=2r/R,, (44) gives

2y=3%(AH/47M,)(2R)%/S for 2 cot?0,—1=0.

Comparing this result with (45) gives

9 /2R,\!*
(2 .
2(2r) Y4\ 2R

which can be written as

2R\ 12720 mil\ /2
AH54,7° =0.309<—) < ) AHu . (50)
6u 2R

AHs4.0°=

(49)

For O,=m/4, (43) gives E=[1—(r/V2k,L]'* and
1- Ez)"”—(qr/\/il’a,L)‘/2 Thus, E(1—E?)? has the
same value as in parallel resonance. With sin?.=3%, we

obtain
AH45°=2AH“. (51)
For 0., slightly less than 7/4, (43) gives ~/(1—E?)
=[(r/V2k;L) —(cot?0,,— 1) J*/2. Replacing E by 1 as
before in (44) gives
1 AH: (2R)? 1

44zM, S

kis T
<[
0 \/jka

where ki, is the lesser of v/R, and 7/VZL(cot?0,—1).
The integral has a maximum

sin26,

—(cotzﬂm—l))— , (52)

’ll'2 AHk

—(2m) /L_ﬂ
4wM; S(2R )32

Zk max=

at the value of 6, which makes
7/Rp=m/V2L(cot%0,,—1).
Comparing this result with (45) gives

Ang_x=4.7AH“ . (53)

For smaller values of 8, (less than that at the peak),
the d-function approximation (9) becomes less accurate
because the spacing is large for the modes with small
values of ks, and the integral in (44) gives values of 2
which are too large. In fact,

AHKAH, f{or 6, near zero. (54)
This result, which can be proved by using (40), can be
understood intuitively as follows: In perpendicular
resonance there are no main-branch modes degenerate
with the main-resonance mode, as seen in Fig. 1. As 0

is increased from zero, it is intuitively clear that the
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AH

|
0 - 45°
(1L Resonance)

90°
(Il Resonance)

6m

Fi1c. 5. Angular dependence of the two-magnon AH for scatter-
ing centers larger than the film thickness. The dots and heavy
portions of the curve correspond to the explicit calculations given
in the text.

density of degenerate main-branch modes does not
increase suddenly to a large value.

The results (46), (50), (51), (53), and (54) are
illustrated schematically in Fig. 5. The sharp peak at
0, slightly less than 45° will be rounded off in practice.
Since the angle a between the film normal and H,,, is
less than 6,,, the peak in AH as a function of « will be
at an angle considerably smaller than 45° in general.
The ratio of AH.x to AH, is independent of the pit
radius R, [see Eq. (53)], but the value of AH at the
minimum between 6,,=45° and 6,,=90° is a function of
R, [see Eq. (50)7]. These results for scattering by large
pits are quite different from those for scattering by
small pits, as seen by comparing Figs. 3 and 5.

It should be mentioned that it is possible that there
may be an increase in the linewidth at the depinning
angle as the angle is increased from the perpendicular-
resonance side. If the mode is Portis pinned, then in
perpendicular resonance m does not extend across the
full thickness of the sample. At the depinning angle m
should extend across the sample thickness, thereby
sampling a larger region of the film. If this larger region
is more inhomogeneous than the small one the linewidth
should increase. As the angle is increased toward parallel
resonance, the linewidth could either increase or de-
crease, depending on the nature of the inhomogeneities.

Finally, the factor dH/dw in the relation

o0H
AH= —Aw
dw

can introduce some structure in the angular dependence
of the linewidth. In YIG, with its small value of 47 M .,
at X band this is a small factor.

SPARKS 1

4. TABLE OF THEORETICAL RESULTS

The following symbols are used in the results listed
below: 2R is the film diameter; 2R, is the pit diameter;
S is the film thickness; m, is the transverse (microwave)
magnetization of the main-resonance mode; m,(0) is
the maximum value of m.(r) (at r=0); 0, is the value
of m, at a pit, averaged over all pits. For one pit in the
center of the film ,/m.(0)=1; N,is is the number
of pits.

See Fig. 2 for the following:

H+Dk+ 22 M, — (w,/ |v])

ux?=cos?0, = s
2w M,

o= 10, “sE”klk=k,; kuax= (2m/A)*?,

9 1/3 T T 21!' 1/2
kcE (———) i =0769—, kmax = <—_(1 _u02)> y
R, R A

»

2m\ /2 568 A
kd= (*'—) Uo=Ug
A VA

ks=lesser of (Fo,kmaxr) -

44105 cm !,

The central results of the paper are the following:
(4) Small pits (2Rp<KS). See Fig. 3.
FOI' k¢<<kmax a-l'ld kc<kmaxr

dxM N\ 2R, N\ /1
AHsml pits=< )( )<_)
1750 /\0.25u/\ S

(Bus2—1)2+1.6
X -

——BX27.2 Oe
5.6%0
) (18a)
B=1, for ka>>ks?
3 1/2m\12
- _<-> uno, for kZ>ka?.
2 k. \A
For k¢>kmax7')
5.6 /2\7
AHvy smlpits = —_(—) 47I'Ms
288 \1
(Bu2—1)241.6 (2R,)*
% B,, (18b)

5.6 S
Bs =kmax r3 ) fOI' kaax 72<<21FM,
= (ZT/A)kmax Ty fOr l de I <<kmax2 .

(B) Large pits (2R,$.S). See Fig. 5.
(a) Parallel resonance
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(1) 2R,>>S
(41rM,,\{ 1-H30/m+(2/7) In[(20/7)R,/4S T2
AH||=
1750 / 6.2937
2RAVZ/ SN /20 mil\32/ 17, \?
X(E) (1_;.;)( 2R ) (m,(O))
NpiX3.3 Oc.  (47)
(2) 2R,=(2//m)S
AxM o 7 S\N*2/20 mil\32/ 17, \?
wm=(00)0) Gr) Go)
1750 /\ 1 2R m.(0)
X NpitsX0.23 Oc.  (48)

In the following results (b)—(e), AH,, is given by (47)
or (48), depending on the size of 2R,/S.
(b) Intermediate angle; 6,,=54.7°

2R\ V2720 mily 12
AH54.7"=0.309<—~—) ( ) AH, . (50)
6u 2R

(c) Intermediate angle; 6,,=45°

AH 45°=22AH,. Y
(d) Angle for maximum AH;
1/ [2\ 2R,
Hm%tan—l[l - —( ~) ———:I
4 w/ 2R
AH ox==25AH,;. (53)

(e) Small values of 6,, (near perpendicular resonance)
AH,KAHy. (54)

(C) Perpendicular resonance in very thin films (higher
branches above main-resonance mode).

AHWN /A7 M N\ [ 2Ry \?
s o)
0.2 /\ 1750 /\0.254

4.5X107° Oe cm?\ /1u
X(———)(——)XISA mOe. (22)
D S

Note: For parallel resonance and other values of 8, not
too close to zero (so that there are many exchange
branches having modes with w<wg,), Eq. (18a) is valid
for very thin films.

(D) Linewidths of higher-branch exchange modes. The
dependence of the linewidths of the exchange modes on
the mode number #, where k,,=nr/S, and on M, is
rather complicated. For small #n, AH~4xM #3; for
intermediate 7, AH can be proportional to 4wM 2 or to
(4mM )*n; and for large n, AH~ (4w M ;)*»°. The values
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of » at which the transitions between the different
regions occur depend on the values of S, R,, M,, D,
and H; in a rather complicated way, as discussed briefly
in the Appendix.

APPENDIX: EXCHANGE MODES IN
PERPENDICULAR RESONANCE

The higher-branch exchange modes excited in the
usual ferromagnetic-resonance experiments in thin films
in perpendicular resonance have sin?0;=20. The dis-
persion relation for these modes is

o=H+Dk2,

as illustrated schematically by the dots in Fig. 2. Thus,
in addition to the difference in the dispersion relations
for thin films and bulk-type samples, the exchange
modes are on the high-£ edge of the manifold, while the
main-resonance mode is near the #=0 edge. The density
of degenerate states into which the excited mode
scatters, therefore, is different for these two cases un-
less k. is so large (kc>kmax») that both modes scatter
into all degenerate modes. Otherwise the k2 factor in
the density of states is larger for the exchange mode
than for the main-resonance mode, making AH larger
for the exchange mode.

It is assumed that the leading terms in the scattering
Hamiltonian for scattering out of these exchange modes
with k>0 can be approximated by (5) with the cutoff
factor Cy, replaced by

Cra=1,
=O’

for kn.—k.<k. and k;<k,

otherwise (A1)
where 7 denotes the relaxing exchange mode (having
kn.=mn/S and k,;~20). The evaluation of the sum in
(10) is fairly straightforward, but tedious. Since the
general results would be quite cumbersome, the central
features of the results and order-of-magnitude expres-
sions for AH for three values of R, and S will be given.

The nth exchange line consists of the lowest —%,
mode on the nth branch plus small amounts of the
larger —k&; modes. Thus, the linewidth of the #th line
is essentially determined by the loss of the lowest —k;
mode on the #th branch. See Fig. 1. This mode scatters
into the other modes on the same branch and to the
degenerate modes on the lower branches, i.e., the
branches having £, </%x.. Since the number of modes on
a given branch which have w,—AH <w<w,+AH is
large, the sum over &, can be replaced by an integral,
and the sum on k becomes

knz ‘ll'.R2 ™
> —

ke
> —————/ dky ky.
ko kemknrke w2 2/,

The factor wR?/x? is from the density of states and the
factor of 3w is from the integral of the azimuthal angle

(A2)
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over one quadrant (i.e., over positive k, and k,). If
kn.—k. is negative, the sum over k. extends over all
lower branches.

For a sufficiently large value 7., of #, the spacing
along the %, axis between the relaxing mode » (with
k/20) and the intercept of the next lewer branch
(n—1) with the line w=w, is larger than the cutoff
value k.. In this case mode # cannot scatter into the
other branches, and there is only intrabranch scattering

into the modes with the same value of # and different -

values of £;. The value of #,, is determined by equating
Oy =Wngo/ | V| =ZH i+ D (ner/S)? to

@Oneg1=H;+D[ (10— 1)w/SP+Dks, (A3)
where

D=D+ QrM./k2), (Ad)

and setting ky=k.m/R, in (A3) and k.= (n—1)m/S
in (A4). Assuming that #.,>>1, this gives

1Iros Sy\2
Neo™ "[—'(—‘) '—'1].
2L D\R,

In (A3) and (A4), sin?0p=kz/(k2+k.?) has been ap-
proximated by k/k.2 Since k;=w/R, here, this ap-
proximation is valid when

(A5)

10> (S/Rp)Y2, (A6a)
which is usually satisfied.

Since D in (A4) is a function of k.= (n,—1)x/S,
(A5) must be solved self-consistently. For D (n..m/S)*
>>21I'M 8y

15[ (S/R,)*—11; (A6b)
and for D (ear/S)*<<2w M,
1 4xM, 7 S \* 3
nw%’[—- (—)] . (A6c¢)
4 D(r/S)\R,

The value of AH for this intrabranch scattering will
now be calculated. From &n.=H;+D(nr/S)? and
wp=H;+D(nr/S)?+ Dk, the value of @r—a, is

(:)k_‘(:)r=:0kj2 ,

and Y_x in (10) becomes

TRiw [ (3AH)?
= / dky by,
7T w2y O (o Gamy

where the first term in the sum on %, in (A2) was re-
tained and the upper limit & of the integral was replaced
by infinity since the integrand is small for ks=k..
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Evaluating the integral gives

wR* AH
=—— (A7)
& 16 D
for the intrabranch scattering, and (10) gives
5.6 4 2R, T
AH= —— WMs[—] fU
t S
de M, 0.5 T
=|: ][ :IfUXlGOe, (A8)
10* JLS/2R,
where
U=n?, for Dk, *<2xM,
=2rM,/D(x/S)?, for Dk,2>2rM,

for n>mn.,. Here a factor of f has been included to allow
for the fact that the surface pits may not be closely
packed on the surfaces of the film. For close packing,
f=1, and for spacing between the pits, f<1. The
crystallites in metallic films tend to extend across the
full thickness of the films. A rounding of the crystallite
edges by oxidation could give rise to surface pits. If
the diameter @ of the crystallites is less than S, then f
should be of the order of unity. But if =.5, then f<1,
and if @S, then f<1. For the case of f=~1 and
Dk, 2<K2wM,, (A8) gives’AH=216m* Oe for the present
example, which is to be compared with Dk,.2=8.6n2
Oe. Even though the perturbation is so large that the
perturbation analysis is not valid for this case when
f=21, the result does indicate that the linewidth should
be larger.

Consider the case of S=4R,=5000 &, D=2.2)X10"?
Oe cm?, D(w/S)?=8.6 Oe, and 47 M ;= 10* Oe. Equation
(A6c) gives 7,,=17. Since only odd modes usually have
large intensities, all modes above the eight intense ones
scatter strongly into only the modes on the same branch.
The value of AH for these modes with #>#,, is given
by (AS).

Next consider the case of S=20 R,=5000 A, with
the same values of D and M used above. The value of
eo is ~200, which is so large that the region in which
AH is independent of k.. is at values of # greater than
any observed to date. For values of k.,Zw/R,, i.e.,
nZS/R,=20, mode n can scatter into all degenerate
modes. The sum over &, in (A2) then contains many
terms, and the sum can be replaced by an integral over
all degenerate states; thus, the result (18b) is valid for
the modes with #<20. The value of Dk, for the last
of these modes, with n=20, is ~2/3(2xM ). For larger
values of %, the integral does not extend over all degen-
erate states, and the value of AH is less than the value
given in (18b).
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For S=8R,=5000 A and the same values of D and
M, it can be shown that AH ~4xM #? for a small range
of # around #=215. The mode # scatters only into modes
nearby in k space in this case, and the factor n2~Fk,?2
is the usual density-of-states factor.

In order to determine if the present model is valid,
it would be necessary to inspect the film to determine
the size 2R, of the scattering centers and the packing
factor f. In the absence of this information, it can be
stated only that the results afford a possible explana-
tion of several experimental results. For example,
Phillips and Rosenberg! and Wigen!® have reported

(1;6’11}‘)' G. Phillips and H. M. Rosenberg, Phys. Letters 8, 298
1 P, E. Wigen, Phys. Rev. 133, A1557 (1964).
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AH ~n? for modes with 11=<#=21 in a Co film and for
~4=<n<9 in a permalloy film, respectively. Two of
the cases above give AH~n? with the correct order of
magnitude (AH~100 Oe for the large-» modes). Weber,
Tannenwald, and Bajorek!® have observed linewidths
independent of z for large values of # (9=#=7max,
where 7max ranged from 15 to 31). For =09, the value
of Dk,.? is ~1600 Oe, which is considerably smaller
than 2xM,=5500 Oe. Although the present results
predict that AH is independent of » for large », they
cannot explain the fact that AH is independent of #
for the smaller values of .

16 R. Webber, P. E. Tannenwald, and C. Bajorek (un-
published).
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A theory of surface-spin pinning and its effects on the ferromagnetic-resonance mode intensities is pre-
sented. The pinning by a surface inhomogeneity (e.g., a demagnetization field from surface imperfections
or an inhomogeneous saturation magnetization) of thickness e is considered. Roughly speaking, the modes
are nearly unpinned for a thin-surface inhomogeneity (&<A/x, where A is the exchange constant in the
exchange field AV2M), while the low-order modes are pinned by a thick-surface inhomogeneity (&<<A/r not
satisfied). The theory indicates that the low-order modes should be pinned unless great care is exercied in
the film preparation. In 809, Ni-20%, Fe permalloy, (A/x)122290 A ; thus, the surface region would have
to be only a few lattice constants thick in order for there to be no pinning. These results are obtained by
considering the equation of motion of the magnetization in the surface region as well as the bulk region.
The intensities and frequencies of magnetostatic modes (negligible exchange energy) are relatively inde-
pendent of surface-spin pinning, in contrast to the result for exchange modes (negligible microwave de-
magnetization energy) that pinning the surface spins gives rise to large intensities of even modes.

I. INTRODUCTION

INCE Kittel’s suggestion! in 1958 that the exchange
integral in ferromagnetic materials could be ob-
tained by ferromagnetic-resonance measurements in
thin films, interest in this field has increased steadily.'—5

* Present address: The RAND Corp., Santa Monica, Calif.
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Interpretation of experimental results has been obscured
by a lack of understanding of the boundary conditions®
at the film surfaces. The theories of Wigen, Kooi, and
co-workers? (saturation magnetization M, of surface
layer different from that of the bulk) and Portis?
(parabolic M,) explain the positions and critical-angle
depinning, but not the intensities, of exchange modes.%
Rado and Weertman? have shown that in the absence
of a specific mechanism to pin® the surface spins, the
exchange interaction makes the normal derivative of
the magnetization zero for the long-wavelength modes.
Thus, the intensities of all long-wavelength modes
except the main-branch modes® are zero in this case.
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62 Exchange modes have negligible microwave demagnetization
energy, and magnetostatic modes have negligible exchange energy.
The main-branch modes have the smallest value of k.-, where 2
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